31/B - Practice Final - Solutions

December 3, 2011

1. (20 points) Calculate g(1) and g'(1), where g(x) is the inverse of $f(x) = x + \cos x$.

Solution Note that $f(0) = 0 + \cos 0 = 1$. Thus, g(1) = 0. Now, $f'(x) = 1 - \sin x$, and

$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{1 - \sin 0} = 1.$$

2. (20 points) Evaluate

$$\int \frac{dx}{x^2 \sqrt{5 - x^2}}$$

using trigonometric substitution.

Solution We substitute $x = \sqrt{5}\cos\theta$. Then, $dx = -\sqrt{5}\sin\theta \,d\theta$, and

$$\int \frac{dx}{x^2 \sqrt{5 - x^2}} = \int \frac{-\sqrt{5} \sin \theta \, d\theta}{5 \cos^2 \theta \sqrt{5 - 5 \cos^2 \theta}}$$
$$= -\frac{1}{5} \int \frac{\sin \theta \, d\theta}{\cos^2 \theta \sin \theta}$$
$$= -\frac{1}{5} \int \frac{d\theta}{\cos^2 \theta}$$
$$= -\frac{1}{5} \int \sec^2 \theta \, d\theta$$
$$= -\frac{1}{5} \tan \theta + C.$$

Now, using triangles, one sees that $\sin \theta = \sqrt{5 - x^2}$, so that

$$\tan \theta = \frac{\sqrt{5 - x^2}}{x}.$$

Thus, the final answer is

$$\int \frac{dx}{x^2 \sqrt{5 - x^2}} = -\frac{\sqrt{5 - x^2}}{5x} + C.$$

3. (20 points) Evaluate the integral

$$\int \frac{x^4 + 1}{x(x+1)^2} \, dx.$$

Solution First, doing long division, we see that

$$\frac{x^4+1}{x(x+1)^2} = x - 2 + \frac{3x^2+2x+1}{x(x+1)^2}.$$

Thus,

$$\int \frac{x^4+1}{x(x+1)^2} dx = \int \left(x-2+\frac{3x^2+2x+1}{x(x+1)^2}\right) dx = \frac{x^2}{2} - 2x + \int \frac{3x^2+2x+1}{x(x+1)^2} dx.$$

Now, we use partial fractions. Define A, B, and C by

$$\frac{3x^2 + 2x + 1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.$$

We solve for A, B, and C. Multiplying across by $x(x+1)^2$, we get

$$3x^{2} + 2x + 1 = A(x+1)^{2} + Bx(x+1) + Cx$$
$$= Ax^{2} + 2Ax + A + Bx^{2} + Bx + Cx$$
$$= (A+B)x^{2} + (2A+B+C)x + A.$$

Equating coefficients, we see that A = 1, B = 2, and C = -2. Thus, we get

$$\int \frac{x^4 + 1}{x(x+1)^2} dx = \frac{x^2}{2} - 2x + \int \frac{3x^2 + 2x + 1}{x(x+1)^2} dx$$
$$= \frac{x^2}{2} - 2x + \int \left(\frac{1}{x} + \frac{2}{x+1} - \frac{2}{(x+1)^2}\right) dx$$
$$= \frac{x^2}{2} - 2x + \ln|x| + 2\ln|x+1| + \frac{2}{x+1} + C.$$

4. (20 points) Use the error bound for Simpson's Rule to find an integer N for which $error(S_N) \leq 10^{-15}$ in the integral

$$\int_{1}^{5} \frac{dx}{x}.$$

Solution Let $f(x) = \frac{1}{x}$. Then, the *n*th derivative of f(x) is

$$f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}}.$$

Thus, on the interval [1,5], $|f^{(n)}(x)|$ is a decreasing function. Therefore, we may take

$$K_4 = |f^{(4)}(1)| = 4! = 24.$$

The error is bounded

$$error(S_N) \le \frac{K_4(5-1)^{5}}{180N^4} = \frac{24 \cdot 4^{5}}{180N^4} = \frac{2}{15} \left(\frac{4^{5}}{N^4}\right)^{2}.$$

Setting this less than or equal to 10^{-15} , we find the inequality

$$\frac{2 \cdot 4^{\frac{5}{4}} \cdot 10^{15}}{15} = \frac{\mathbf{8} \cdot 10^{3}}{15} (4 \cdot 10^{3})^{4} = \frac{\mathbf{600}}{3} \cdot (4000)^{4} \le 625 \cdot (4000)^{4} = 5^{4} \cdot (4000)^{4} \le N^{4}.$$

So, we can take $N \ge 20\,000$.

5. (20 points) Calculate the arc length of $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$ over the interval [1, 2e].

Solution Set $f(x) = \frac{1}{4}x^2 - \frac{1}{2}\ln x$. Then, $f'(x) = \frac{1}{2}x - \frac{1}{2x}$. So,

$$s = \int_{1}^{2e} \sqrt{1 + f'(x)^{2}} dx$$

$$= \int_{1}^{2e} \sqrt{1 + \left(\frac{1}{2}x - \frac{1}{2x}\right)^{2}} dx$$

$$= \int_{1}^{2e} \sqrt{\frac{1}{4}x^{2} + \frac{1}{2} + \frac{1}{4x^{2}}} dx$$

$$= \int_{1}^{2e} \sqrt{\left(\frac{1}{2}x + \frac{1}{2x}\right)^{2}} dx$$

$$= \int_{1}^{2e} \left(\frac{1}{2}x + \frac{1}{2x}\right) dx$$

$$= \left(\frac{1}{4}x^{2} + \frac{1}{2}\ln x\right) \Big|_{1}^{2e}$$

$$= e^{2} + \frac{\ln 2 + 1}{2} - \frac{1}{4}$$

$$= e^{2} + \frac{\ln 2}{2} + \frac{1}{4}.$$

6. (20 points) Find the limit

$$\lim_{n \to \infty} \frac{(\ln n)^2}{n}.$$

Solution We use that

$$L = \lim_{n \to \infty} \frac{(\ln n)^2}{n} = \lim_{x \to \infty} \frac{(\ln x)^2}{x},$$

where the latter can be computed using L'Hôpital's Rule. So, applying the rule twice, we get

$$L = \lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

$$= \lim_{x \to \infty} \frac{\frac{2 \ln x}{x}}{1}$$

$$= \lim_{x \to \infty} \frac{\frac{2}{x}}{1}$$

$$= 0.$$

7. (20 points) Use the error bound to find a value of n for which

$$|e^{-0.1} - T_n(-0.1)| \le 10^{-6}$$

where T_n is the *n*th Taylor polynomial for $f(x) = e^x$ with center 0.

Solution The nth derivative of f(x) is just e^x . This is an increasing function, so that

$$|f^{(n)}(x)| \le e^0 = 1$$

for all x in the interval [-0.1, 0]. Thus, set $K_n = 1$. Then,

$$|e^{-0.1} - T_n(-0.1)| \le \frac{K_n| - 0.1 - 0|^{n+1}}{(n+1)!} = \frac{1}{10^{n+1}(n+1)!}.$$

We must solve the inequality

$$10^{n+1}(n+1)! \ge 10^6 = 1\,000\,000.$$

Obviously, n = 5 works. So, in fact, does n = 4, since $5! = 120 \ge 10$.

8. (20 points) For which real numbers a does

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^a}$$

converge?

Solution By the integral test, the series converges if and only if the improper integral

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{a}}$$

does. We can evaluate this integral by substituting $u = \ln x$. Then, $du = \frac{dx}{x}$, and the integral becomes

 $\int_{\ln 2}^{\infty} \frac{du}{u^a},$

which converges if and only if a > 1.

9. (20 points) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{x^n}{n3^n}.$$

Solution Let

$$\rho(x) = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)3^{n+1}}}{\frac{x^n}{n3^n}} \right|.$$

Then,

$$\rho(x) = \lim_{n \to \infty} \left| \frac{x}{3} \right| \frac{n}{n+1}$$
$$= \frac{|x|}{3} \lim_{n \to \infty} \frac{n}{n+1}$$
$$= \frac{|x|}{3}.$$

Therefore, the radius is R = 3. When x = -3, the series converges by the Leibniz test. When x = 3, we have the harmonic series, which diverges. Therefore, the interval of convergence is [-3, 3).

10. (20 points) Find the terms through degree 5 of the Taylor series T(x) centered at c = 0 of $f(x) = e^x \tan^{-1} x$.

Solution Let $T_0(x)$ be the Taylor series for e^x at 0, and let $T_1(x)$ be the Taylor series of $\tan^{-1} x$ at 0. We found via integrating $\frac{1}{1+x^2}$ that

$$T_1(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Thus,

$$T(x) = T_0(x)T_1(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$= \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \cdots\right) \left(x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$$

$$= x - \frac{x^3}{3} + \frac{x^5}{5} + x^2 - \frac{x^4}{3} + \frac{x^3}{2} - \frac{x^5}{6} + \frac{x^4}{6} + \frac{x^5}{24} + \cdots$$

$$= x + x^2 + \frac{x^3}{6} - \frac{x^4}{6} + \frac{3x^5}{40} + \cdots$$